(1) Find the following limits if they exist. If not, why not?
(a) $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \cos x$
(b) $\lim _{x \rightarrow 2^{-}} \frac{1-x}{x-2}$
(c) $\lim _{x \rightarrow \infty} \frac{x-3}{x^{2}}$
(2) Use the difference quotient and definition of derivative to find $f^{\prime}(x)$ if $f(x)=x^{3}-x$.
(3) Find the derivative of each of the following functions and simplify your answer:
(a) $\mathrm{f}(\mathrm{x})=\sqrt{x}\left(x^{2}+2\right)$
(b) $h(x)=\left(1+\tan ^{2} x\right)^{3}$
(c) $g(x)=\frac{x}{\sqrt{x^{2}+1}}$
(4) Find the y-intercept of the line tangent to the curve $x^{2}-x y-y^{2}=1$ at $(2,1)$
(5) Integrate:
(a) $\int_{0}^{\pi / 4} \sin x \cos ^{3} x d x$
(b) $\int_{0}^{2}(3-x)^{2} d x$
(c) $\int \frac{x^{3}}{\sqrt{x^{2}-1}} d x$
(6) Given $\mathrm{f}(\mathrm{x})=x(1-x)^{2 / 5}$,
(a) find the interval(s) on which the function f is
(i) increasing (ii) decreasing (iii) concave up (iv) concave down
(b) find all critical points (c) inflection points (d) find all extrema
(e) given the above information, sketch a graph of the above function.

(7) A person in a rowboat 2 miles from the nearest point on a straight shoreline wishes to reach a house 6 miles farther down the shore. If the person can row at a rate of $3 \mathrm{mi} / \mathrm{hr}$ and walk at a rate of $5 \mathrm{mi} / \mathrm{hr}$. find the least amount of time required to reach the house. (Show all steps you used to determine minimum is absolute)
(8) Find the absolute \min / \max of $f(x)=x-2 \cos x$ on the interval $[-\pi, \pi]$.
(9) (a). Find the tangent line to $y=x^{3}$, when $x=1$.
(b) Find the area between the line from part (a), the graph of $y=x^{3}$ and the x axis, in the first quadrant.
(10) Find the volume of the solid resulting when the region in the first quadrant bounded by the graphs of $y=4 x^{2}$ and $y=16$ is revolved about the x-axis.
** SET UP ONLY - TWO WAYS**
(a) cylindrical shells
(b) disks/washers
(11) A balloon is rising vertically over a point A on the ground at a rate of $15 \mathrm{ft} / \mathrm{sec}$. A point B on the ground is level with A and is 30 ft . from A. When the balloon is 40 ft . above A, at what rate is its distance from B changing?
(12) Find the equation of the line through $(3,4)$ which cuts from the first quadrant a triangle of minimum area.
(13) Does the Mean Value Theorem apply to the given function? If so, find "c". If not, why not?
$\mathrm{f}(\mathrm{x})=\sqrt{2 x+1}, \quad[0,4]$

